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1. INTRODUCTION  
 
This project made use of the first station of the Long Wavelength Array (LWA1) and the AFRL 
Digisonde located at Kirtland AFB, about 80 miles northeast of the LWA1 which is located on the 
Plains of San Agustin in central New Mexico.  LWA1 is a compact array radio telescope operating in 
the 10-88 MHz band, co-located with the Very Large Array of the NRAO. LWA1 currently consists of 
257 dual-polarization active dipole antennas in a 100 m x 110 m elliptical footprint with five outlier 
dipoles antenna located up to 500-m from the main array. Each dipole is individually digitized and then 
formed into 4 beams using a delay-and-sum technique. The beams can be pointed independently; thus 
LWA1 can be used similarly to 4 separate radio telescopes. The individual dipole signals can also be 
recorded. A subset of LWA1 science targets includes pulsars, astrophysical transients, the Sun, Jupiter, 
and the ionosphere, but innovative, technically feasible investigations of all kinds are welcomed. 
 
Of particular interest to this work is the LWA’s capability of performing real-time all-sky monitoring by 
sampling a narrow bandwidth from all 257 LWA1 dipoles (Transient Buffer Narrowband or TBN 
mode). The data stream is sent directly to a computing cluster located at the site which performs the 
cross-correlation and imaging in near real-time. Images of the sky from this analysis are made available 
on the web immediately and can be viewed on “LWA TV” at 
http://www.phys.unm.edu/∼lwa/lwatv.html. 
 
The goal of this project was to first detect meteors using the combination of the AFRL Digisonde and 
the LWA1 and then to use meteors to deduce properties of the neutral wind. 
 
 
2. BACKGROUND  
 
Meteor radar echos have long been used to determine neutral wind velocity in the ionosphere E region. 
As millions of meteors enter the Earths upper atmosphere every second, they collide with atmospheric 
molecules and cause the formation of a plasma trail as a dense plasma column that is carried away by 
neutral wind between 140 and 70 km. Small radars detecting specular meteor echoes in the direction 
perpendicular to the meteor path have been used for many years to deduce neutral wind velocity by 
measuring the average Doppler shift. Low power meteor radars require illumination of meteor trails 
from TV or VHF radar. This classical approach limits neutral wind measurement below 100 km altitude 
and at low ~1 km altitude resolution. 
 
The LWA1 is capable of receiving both specular and non-specular echoes of digisonde radio waves 
transmitted from Kirtland AFB. The AFRL digsonde illuminates the sky over Kirtland and the LWA1 
with low power 1-30 MHz radio waves.  The LWA1 operates as a passive receiver using either the TBN 
mode or the beamforming mode (DRX).  The frequency range of the LWA1 is 5-88 MHz.   
 
 
 
3. METHODS and OBSERVATIONS  
 
The AFRL digisonde is a low power Digisonde Portable Sounder capable of measuring high resolution 
temporal and spatial ionospheric electron density variations. Although it transmits only 300W of pulsed 
RF power, it compensates for its low power by digital pulse compression and coherent spectral 
(Doppler) integration, providing about 30dB of signal processing gain. During AFRL digisonde 
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operations LWA1s coherent multiple receiver array can measure the frequency shift and phase 
difference on a number of antennas.  See Figure 1 for a schematic of how the two instruments work in 
concert to detect meteors. 
 
To support the observations we constructed 5 Data Recorder Storage Units (DRSUs).  Each of these 
units consists of a 1U rack-mounted enclosure with an e-SATA controller board, and slots for 5 disk 
drives of 3 TB each.  The disks are assembled into a RAID 0 array with a total of 15 TB recording 
capacity.  The drives are Seagate SV35 model ST3000VX000 which have been designed for 
applications that require extended data transfers (such as video recording).  An assembled enclosure is 
shown in Figure 1.  Each DRSU can be mounted at the output of a beam or TBN and provides capacity 
for 40 beam-hours of recording, or for 30 hours of  TBN recording. 
 
 

                            
Figure 1. Schematic of LWA1 and Kirtland digisonde being used in conjunction. 
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Figure 2. The data recorder storage unit with the case open to expose the 5 drives. 
 
 
 
The LWA1 observed 57 hours in project LL001 between December 8, 2012 and December 10, 2013.  
These observations were taken with a mix of TBN and DRX modes (see Table 1) at frequencies 
between 5 and 29 MHz.  The raw data were collected on Data Recorder Storage Units (DRSUs) built 
specifically for this project.  Following the observations, the data were off-loaded to external disk 
drives and delivered to AFRL for further analysis.  UNM provided data readers and visualization tools 
in the LWA Software Library (LSL; Dowell et al. 2012).  
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Table 1. List of Observations 
 

 
 

 
 

UNM students Caleb Grimes and Orlando Leone were supported in part by this award, along with 
UNM postdoctoral fellow Dr. Kevin Stovall.  Orlando built the DRSUs used by this project and learned 
about the hardware we use on LWA1 to capture up to 1 Gbps.  Caleb was primarily responsible for 
operating the station during the observations.  In this way he gained valuable skills in learning how to 
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Session 10 SubiD Project Target UTC Date Operator Observations 

1 1 LLOOl 12-08- 12 00:00 UTC CKG 1 

1 2 LLOOl 12- 11 -05 11:00 UTC JC 

2 1 LLOOl 12-08- 12 00:00 UTC CKG 

2 2 LLOOl 12- 11 -06 11:00 UTC FS 

3 0 LLOOl 12- 11 -07 11:00 UTC FS 

4 0 LLOOl 12- 11 -08 11:00 UTC FS 

5 0 LLOOl 12- 11 - 17 10:10 UTC FS 

6 0 LLOOl 12- 11 - 18 09:00 UTC FS 

10 0 LLOOl 12- 12- 1311:00 UTC SE 
11 0 LLOOl 12- 12- 1411:00 UTC SE 
12 0 LLOOl 12- 12-2211:00 UTC JL 
13 0 LLOOl 12- 12-23 11:00 UTC JL 
17 0 LLOOl 13-02-04 20:30 UTC JL 
18 0 LLOOl 13-02-04 20:30 UTC JL 
19 0 LLOOl 13-02-04 20:30 UTC JL 

20 0 LLOOl 13-02-04 21:00 UTC JL 
21 0 LLOOl 13-02-04 21:00 UTC JL 

22 0 LLOOl 13-02-04 21:00 UTC JL 

23 0 LLOOl 13-02-04 21:00 UTC JL 
24 0 LLOOl 13-02-06 20:00 UTC JL 

25 0 LLOOl 13-02-06 20:00 UTC JL 

26 0 LLOOl 13-02-06 20:00 UTC JL 
27 0 LLOOl 13-02-06 20:00 UTC JL 

28 0 LLOOl 13-02-07 20:00 UTC JL 

29 0 LLOOl 13-02-07 20:00 UTC JL 

30 0 LLOOl 13-02-07 20:00 UTC JL 
31 0 LLOOl 13-02-07 20:00 UTC JL 

32 0 LLOOl 13-02-07 21:01 UTC JL 

33 0 LLOOl 13-02-07 21:01 UTC JL 
34 0 LLOOl 13-02-07 21:01 UTC JL 

35 0 LLOOl 13-02-07 21:01 UTC JL 

36 0 LLOOl 13-02-08 20:00 UTC JL 
37 0 LLOOl 13-02-08 20:00 UTC JL 

38 0 LLOOl 13-02-08 20:00 UTC JL 

39 0 LLOOl 13-02-08 20:00 UTC JL 1 

so 0 LLOOl 13- 11 -0121:00UTC JR 2 
51 0 LLOOl 13- 11 -01 20:55 UTC JR 

52 0 LLOOl 13- 11 -01 20:55 UTC JR 

53 0 LLOOl 13- 11 -01 20:55 UTC JR 
54 0 LLOOl 13- 12- 10 12:00 UTC TE 

55 0 LLOOl 13- 12- 10 14:00 UTC TE 

56 0 LLOOl 13- 12- 10 14:00 UTC TE 

57 0 LLOOl 13- 12- 10 14:00 UTC TE 

58 0 LLOOl 13- 12- 10 12:05 UTC TE 
Showing 1 to 44 of 44 entries 



control a telescope and gained valuable insights in what the Universe looks like at low frequencies.  Dr. 
Stovall assisted the PI (G. Taylor) with the preparation of the observations and consulted on software 
development needed to pick out the meteor signals.  Our collaborator, Dr. Joe Helmboldt, also 
consulted with us on the analysis of the observations. 
 
 
 

                                          
Figure 3. LWA 1 Sky view at three time resolutions during the Kirtland Digisonde operation.  
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4. RESULTS and DISCUSSION

From the TBN measurements we detected a number of meteor trails (see Fig.1).  Further analysis is 
required in order to derive wind speeds and trail heights.  Preliminary results were reported at a 
workshop on Space Weather held at UNM on October 2, 2013.  Further analysis has been delayed by 
the retirement of one of our AFRL collaborators, Dr. Chin Lin, in late 2013.   Some results are shown in 
Figures 4-9.    

Figure 4. All-sky image detected by LWA1 at 9.1 MHz in the afternoon with a time period of 1 
second.  The image shows digisonde reflection by the ionosphere as a bright spot in the upper right 
quadrant.    

Approved for public release; distribution is unlimited.

6



                            
Figure 5. All-sky image detected by LWA1 at 5 MHz with a time resolution of 1 second.   
 

                        
Figure 6. All-sky image detected by LWA1 at 29.9 MHz with a time resolution of 1 second.    
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Figure 7. Example of the difference image between adjacent all-sky images showing bright spots.      
The bright spot near the center of view in the upper right quadrant might be due to meteor reflection.   

                                         
Figure 8.  Another example of a possible meteor detection.      
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Figure 9. Detection of echoes from the Kirtland Digisonde off of meteor trails with LWA1. 

In the course of this work on looking at reflections from meteors we discovered emission coming 
directly from the more energetic meteors, so-called “fireballs” (see Fig.10; Obenberger et al. 2014).  
While examining TBN observations at frequencies between 25 and 75 MHz, we found 49 long (10s of 
seconds) duration transients. Ten of these transients correlate both spatially and temporally with large 
meteors (fireballs), and their signatures suggest that fireballs emit a previously undiscovered low 
frequency, non-thermal pulse. This emission provides a new probe into the physics of meteors and 
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identifies a new form of naturally occurring radio transient foreground.  Below we summarize our 
arguments for why this must be emission from the fireball as opposed to reflection off of the ionized 
plasma. 
 
First, typical transmitters are strongly polarized, resulting in reflections that are strongly polarized 
(Helmboldt et al. 2014; Close et al. 2011). However no significant amount of linear nor circular 
polarization has been detected from the observed transients. Secondly, a large portion of the RFI seen 
by LWA1 is narrower than the 75 kHz PASI band and is easily identifiable by its spectra (Obenberger 
and Dowell 2011). Yet none of the observed transients contain any spectral features. Thirdly, the light 
curves of the observed transients are consistent with each other, ranging from 30 to 150 s, showing a 
linear rise and a long exponential decay, and otherwise show a smooth evolution. A typical reflection 
from an overdense trail reaches maximum brightness in just a few seconds, maintains a relatively 
constant average brightness while undergoing sporadic dimming and re-brightening. It then quickly 
decays away once it expands to the point that the density reaches the under-dense criteria (Ceplecha et 
al. 1998; Helmboldt et al. 2014). The observed transients are also inconsistent with light curves from 
non-specular echoes, which vary greatly from one to the next, following no particular pattern. More 
importantly, however, non-specular echoes are weaker and more rare than over-dense specular echoes 
(Bourdillon et al. 2005; Close et al. 2011). Therefore if the LWA1 were seeing non-specular reflections 
it should also see many more bright specular reflections scattering from the same transmitters. Finally, 
the observed transients have azimuths and elevations consistent with the uniform distribution 
convolved with the LWA1 power pattern. This distribution implies that the sources appear in random 
locations with no preferable sky position. This is inconsistent with what is expected from specular 
echoes of man-made radio frequency interference (RFI), which should increase towards the horizon 
due to the increased number of incident angles with distant transmitters required for forward scattering. 
The observed pattern could be consistent with nearby transmitters. However, because the signal 
strength depends on the inverse-cube of the distance to the meteor, there should be many very bright 
nearby RFI sources on the horizon but these are not observed. This pattern is also inconsistent with 
non-specular reflections, which are preferentially located in a relatively small region of the sky that 
satisfies the requirement that the pointing vector is perpendicular to the geomagnetic field (Bourdillon 
et al. 2005; Close et al. 2011). For these reasons it seems unlikely that forward scattering is responsible 
for the signals detected from fireballs. It is therefore our conclusion that fireball trails radiate at low 
frequencies. 
 
Decametric radio emission from meteors has not been previously detected, but this is not the first time 
its existence has been discussed. Hawkins (1958) conducted a search for radio emission, but reported 
only upper limits with a 5 sigma sensitivity of 10^8 Jy at 30 MHz for 1 s bursts. It is also interesting to 
note that in the last several decades detections of extremely low frequency (ELF) and very low 
frequency (VLF) emission have been reported coincident with large meteors (Guha et al. 2012; Keay 
1980). The physical mechanism responsible for this emission is not well understood, but might be 
related to our detections of higher frequency emission.  
 
Given the vast range in energies and size scales of meteors and their corresponding plasma trails, this 
emission may exist at a wide range of frequencies, timescales, and energies. Investigating this emission 
further will yield new insights into the physics of meteors and their interaction with our atmosphere. 
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Figure 10. Image of the sky, after subtraction, of the fireball of January 21, 2014 which covered 92◦. 
The edge of the circle marks a cutoff of 25◦ above the horizon. 
 
 
Moreover fireballs are now a known radio transient foreground source and need to be taken into 
account when searching for cosmic transients. It is interesting to note that transient atmospheric 
phenomena, unknown to emit at radio frequencies, have been proposed as the possible source of 
Perytons and perhaps even Fast Radio Bursts (Burke-Spoloar et al. 2011).  
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5. CONCLUSIONS

Due to the low transmitted power we have only been able to detect meteor reflections at 29 MHz with 
the LWA1 from the AFRL Digisonde.  Observations at 5 and 9 MHz produce reflections off of the 
ionosphere but have not yielded detections of meteors. This is likely due to a combination of improved 
sensitivity and reduced interference at the higher frequency.  Some of the same tools used to detect 
meteor trails using the Kirtland digisonde have also been applied to the case of using “transmitters of 
opportunity” in order to detect meteors with the LWA1.  Specifically we have demonstrated that using 
TV Channel 2 transmitters at 55.25 MHz it is possible to detect over 10,000 meteors/hour (Helmboldt, 
J. F. et al., 2014, Radio Science, 49, 3).  We have also detected intrinsic low frequency emissions from 
bright meteors.  
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